
Tailoring Software Traceability to Value-Based Needs.doc 10.03.2005

3.1 Tailoring Software Traceability to
Value-Based Needs

Alexander Egyed

Abstract: Software development generates and maintains a wide range of arti-
facts, such as documentation, requirements, design models, and test scenarios; all
of which add value to the understanding of the software system. Trace dependen-
cies identify the relationships among these artifacts. They contribute to the better
understanding of a software system as they link its distributed knowledge. Trace
dependencies are also vital for many automated analyses including the impact of
change and consistency checking. This chapter compares the problem of manual
traceability versus automated traceability with the Trace/Analyzer approach. This
chapter also explores how to tailor precision, completeness, correctness, and time-
liness to adjust the trace analysis to value-based needs.

Keywords: traceability, software modeling, trace analysis, trade-off analysis, con-
sistency, impact of change, change propagation, traceability uncertainties.

1. Introduction

Software development is a process that involves many stakeholders and generates
a range of development artifacts. For example, the requirements are typically cap-
tured independently from the design/implementation although it has been recog-
nized that there is a strong, intertwined relationship between them (Nuseibeh,
2001). The design, in turn, is often refined stepwise over several layers to explore
the complexity of subsystems. Each such subsystem or layer may be the explored
structurally (i.e., class diagrams) and/or behaviorally (i.e., sequence or statechart
diagrams) (Rumbaugh et al., 1999).

Handling artifacts independently benefits the concurrent software development
(Boehm, 2003) because it separates concerns, reduces complexity, and allows en-
gineers to work independently. However, these artifacts (e.g., requirements, de-
sign) must to be linked together to understand their combined impact onto the
software system. Trace dependencies explicitly describe the relationships among
such separately recorded artifacts.

In some form, every software artifact has “some relationship” to every other ar-
tifact. We thus define a trace dependency to specifically identify whether two,
separately-recorded artifacts have the same/similar meaning (i.e., since traces tend
to bridge artifacts of different modeling notations it is typically not possible to
capture same/similar artifacts in a uniform manner). However, there are many po-
tential trace dependencies and value-based software engineering (Boehm, 2003;
Boehm-Huang, 2003) recognizes that it is not always meaningful to capture all of

2 Alexander Egyed

them without understanding their value. While this chapter does not discuss how
artifacts differ in their value, it does stipulate that the quality of trace dependencies
should reflect the value of the artifacts they bridge (better quality traces for
higher-value artifacts). It is thus beneficial to customize traces in terms of their
precision, completeness, correctness, and timeliness.

Trace analysis is the process of finding and validating trace dependencies
among artifacts. While finding trace dependencies alone is not sufficient to recon-
cile multiple perspectives, they are the foundation for any such mechanism. Trace
dependencies are vital for documentation, program understanding, impact analy-
sis, consistency checking, reuse, quality assurance, user acceptance, error-
reduction, cost estimation, and customer satisfaction (Antoniol et al., 2002; Biffl-
Halling M., 2003; Pohl, 1996; Gotel-Finkelstein, 1994; Ramesh, 1993). Their ab-
sence usually inhibits automation. This chapter discusses how to generate and
validate trace dependencies and how to customize this process to value-based
needs. That is, not all traces are equally important and this chapter demonstrates
how the trace analysis can be tailored to the importance of the artifacts they
bridge. It must be noted that this chapter does not discuss the many uses of trace
dependencies (aside of some examples).

Not understanding trace dependencies has many negative side effects. Most
significantly, it increases the risk that changes are not propagated correctly. And it
causes errors in that engineers, ignorant or unaware of the inconsistencies, make
decisions on inaccurate information.

Trace analysis is well motivated in value-based software engineering (Boehm,
2003) due to the need to evolve the system and software concurrently. Concurrent
engineering implies that changes can happen anytime and anywhere and traces
help the engineer in identifying the impact of those changes across all develop-
ment artifacts (e.g., requirements, design, and implementation). Traces are also vi-
tal for value-based monitoring and control (Boehm, 2003) because the engineer
needs to understand the mapping between goals and solution. This value benefit
has been recognized in the past as there are many standards that mandate trace
analysis as a required activity (e.g., DOD Std 2167A, IEEE Std. 1219, ISO 15504
, and SEI CMM).

On the downside, trace analysis is a complex activity. Standards encourage
trace analysis but they generally do not tell how to do it (Lindvall, 1994; Lindvall-
Sandahl, 1996). Also, existing tool support is typically limited to the recording of
trace dependencies but not to their identification (Antoniol et al., 2002) (i.e.,
traceability matrix). As a result, thorough trace analysis is a predominantly manual
activity (Card, 1992) that has to cope with many complexities:

• Non-scalable growth: up to n2 trace dependencies for n artifacts (Antoniol et

al., 2002; Card, 1992)
• Syntactic and semantic differences: hard to identify traces exactly

(Övergaard, 1998; Jacobson, 1987).
• Informal/semi-formal languages (e.g., requirements, UML design): artifacts

are described imprecisely (Finkelstein et al., 1991) and cause trace uncertain-
ties (Egyed, 2004).

VBSE book format sample chapter 3

• Many-to-many mappings (Tilbury, 1989): a requirement is often implemented
by multiple design elements but these design elements may also implement
other requirements.

• Incompleteness and inconsistencies (Lindvall-Sandahl, 1996).
• different stakeholders in charge of different software artifacts (Boehm et al.,

1998) where no single stakeholder understands them all.
• Increasingly rapid pace of change (Moore, 1995): traces change as their arti-

facts evolve.
• Non-linear increase in the number of software artifacts during the course of

the software lifecycle (Cross, 1991) (this feeds to the n2 complexity)

In summary, no simple, accurate, and automated approach to trace analysis exists
to date. The few approaches that support the automatic detection of trace depend-
encies usually require precise and complete models (i.e., if you make the models
precise enough then trace analysis becomes implicit (Jacobson, 1987)). However,
informal requirements and popular design models (e.g., UML) are not nearly pre-
cise enough to benefit from this automation. Therefore, comprehensive trace
analysis is largely a manual activity resulting in high cost, incompleteness, and
even incorrectness (Cross, 1991). The predominant way of dealing with this com-
plexity is by limiting trace analysis to some necessary minimum. Unfortunately,
engineers rarely predict accurately which trace dependencies are more important
than others.

This chapter introduces a testing-based approach to trace analysis that reduces
or avoids all of the complexities discussed above. This chapter also emphasizes on
value-based trade-offs during trace analysis. These trade-offs explore:

- what traces are needed (i.e., not all traces are equally important)
- when those traces are needed (i.e., not all traces are needed at the same time)
- what level of precision (detail), correctness, and completeness these traces are

needed (i.e., to concentrate on traces that have a higher value)

That is, we demonstrate how to tailor trace analysis to the needs of value-based
software engineering by producing better quality traces for higher-value artifacts.
This saves cost and effort in that unnecessary trace analysis is avoided (or re-
duced). It must be noted that this chapter does not discuss how to identify high-
value artifacts (e.g., see chapter 2.2 and 2.3 for information on requirements pri-
oritization techniques) and it does not identify what quality of traces are needed
for certain uses (e.g., see chapter 3.2 on using traces for value-based testing). This
information is expected as input and it is used to guide (tailor) the trace analysis.

In the following, we will demonstrate how to compute traces through transitive
observations and, in doing so, how to reduce the quadratic traceability problem to
a linear one (where n inputs compute up to n2 results). Precision, completeness,
and correctness are tailorable variables during the trace analysis to reduce cost and
increase (or maintain) quality. These variables are customizable to individual arti-
facts to cater to the needs of value-based software engineering (i.e., to support the
prioritization of artifacts). That is, since value-based software engineering decides

4 Alexander Egyed

on the importance of artifacts, we will demonstrate how to customize trace analy-
sis to match traceability quality accordingly.

Section 2 introduces an illustrative example to discuss the complexities of trace
analysis and Section 3 presents our testing-based approach. Section 4 then gener-
alizes our approach and Section 5 discusses various factors that influence the re-
sults of the trace analysis.

2. Video-On-Demand Case Study

We will demonstrate our approach on a Video-On-Demand (VOD) system
(Dohyung, 1999) that provides capabilities for searching, selecting, and playing
movies. The “on-demand feature” supports the playing of a movie concurrently
while downloading its data from a remote site.

Software Artifacts (Requirements, Design, and Code)

The VOD system consists of 21 Java classes and uses a large number of off-the-
shelf library classes. The VOD system was modeled using various diagrams (e.g.,
class and statechart diagram) and textual views (e.g., requirements) (Egyed-
Grünbacher, 2002). The purpose of the trace analysis is to uncover the relation-
ships among these requirements, design, and code artifacts.

Table 1. List of VOD Requirements

r0 Download movie data on-demand while playing a movie
r1 Play movie automatically after selection from list
r2 Users should be able to display textual information about a selected movie
r3 User should be able to pause a movie
r4 Three seconds max to load movie list
r5 Three seconds max to load textual information about a movie
r6 One second max to start playing a movie
r7 Novices should be able to use the major system functions (selecting

movie, playing/pausing/stopping movie) without training
r8 User should be able to stop a movie
r9 User should be able to (re) start a movie

Table 1 depicts a subset of the VOD requirements. For instance, requirement r7

defines the need for an intuitive user interface modeled after a VCR player. Re-
quirement r6 defines a maximum delay of one second to start playing a movie
once it has been selected. These requirements are written in an informal prose and
it is generally infeasible to identify trace dependencies among them automatically.

VBSE book format sample chapter 5

Main Window

playing
video

pausing
video

stopped
video

playing
video

streaming video

pausing
video

stopped
video

Pause

Stop

Play

Stop

Play
Play

Quit

Select

[s1]

[s2]

[s3]

[s8]

[s9]

[s10][s11]

[s11]

[s12][s12]

StreamerMovie Display

Main Window Server Selection

Movie Selection

Server Access

select
movie

[c4] [c2]

[c3]

[c1]

[c6]

[c5]

Figure 1. Class and Statechart Diagram of the VOD system

The VOD system was modeled in UML and Figure 1 depicts two UML dia-
grams (perspectives) of its structure and behavior. The statechart diagram (top)
describes the behavior of the VOD. A user may select individual movies for play-
ing. During playing, a selected movie may be paused, stopped, and played again.
The transitions between these states correspond to buttons a user may press in the
VOD’s user interface. The class diagram (bottom) shows the coarse structural de-
composition of the VOD system. In the following, the model elements are often
referred to by their short identifiers. Note that the presented model is a subset of
the actual UML model for brevity.

Trace Dependencies and their Complexity

The goal of the trace analysis is to understand how the software artifacts in Table
1 and Figure 1 relate to one another and to the source code. As such, trace analysis
should reveal how the statechart elements relate to the classes or how the require-
ments relate to the statechart and class elements. After all, every state transition
describes a distinct behavior and every class describes a different part of the struc-
ture that implements that behavior. Thus, they represent two separate perspectives
of the VOD system. The goal of the trace analysis is to identify the commonality
between them. For example, what state transition requires the Streamer class? Or
what classes implement the “Play” transition? While it might be easy to guess
some of these trace dependencies, the semi-formal nature of the UML diagrams
and the informal nature of the requirements make it hard to identify them com-
pletely and virtually impossible to do so automatically.

6 Alexander Egyed

While the VOD system appears rather small and uncomplicated, it may surprise
that it exhibits many of the complexities we discussed earlier:

• It has factually 1012 possible trace dependencies among the ten requirements,

six classes, eight state transitions, and 21 Java classes (i.e., (6+10+8+21)2/2).
• The requirements, statechart, and class diagrams exhibit strong syntactic and

semantic differences; in fact, the requirements are not even defined formally
and the UML diagrams are defined semi-formally at best.

• There is no guarantee of consistency and completeness among these artifacts
as different stakeholders created them.

How could any trace analysis tool ever understand these development artifacts?
And if no such tool can understand the development artifacts, how could they ever
identify trace dependencies among them automatically? It is clear that no fully
automated approach could do that. This chapter will demonstrate what guidance is
required by the engineer and how it is possible to reduce these many complexities.

A Few Samples how Trace Dependencies are used

Trace analysis does not solve issues such as requirements conflict analysis, impact
of changes, or consistency checking. However, trace analysis provides a necessary
foundation for doing these and other activities. The following illustrates the use of
trace dependencies during some of these activities.

Table 1 exhibits a conflict between two requirements that is not obvious to see
at first. Requirement r6 is a performance requirement that requires an at most one
second delay in starting a selected movie. What is not obvious is that in order to
start the movie, the player needs to know about the movie details (i.e., location of
file for streaming). We find that the requirement r5 allows for a three-second re-
sponse time for downloading the movie info. This is a potential conflict as the
downloading of the movie details may take more time than the starting of the
movie is allowed to take altogether. Trace analysis should identify a trace depend-
ency among the two requirements. While knowing about this trace dependency, in
itself, does not identify the conflict among the two requirements, it nevertheless
implies the close relationship between the two requirements which is important for
conflict analysis (Egyed-Grünbacher, 2004).

Trace analysis should also identify a trace dependency between requirement r1
and the statechart elements s3 and s8. This trace dependency implies that the se-
lecting and automated playing of a movie is implemented in the “select” and
“play” transitions of the statechart diagram. If this requirement changes (i.e., no
longer start the playing of a movie automatically after selection) then the transi-
tions s3 and s8 are affected and may need to be changed also. While trace depend-
encies alone are not sufficient to describe the impact of changes, it is obvious that
they play a vital role during the impact-of-a-change analysis.

And trace analysis should identify trace dependencies between the class dia-
gram and the source code. This information is important for consistency checking

VBSE book format sample chapter 7

to, say, validate whether the calling dependencies in the design are implemented
correctly in the implementation. For example, the class diagram defines a calling
dependency (arrow) between c2 and c3. Therefore, the Java classes that imple-
ment c2 must call at least one of the Java classes that implement c3. As before,
trace dependencies do not guarantee consistency but consistency checking relies
on trace dependencies to understand what to compare.

3. Testing-Based Trace Analysis

Trace analysis is the process of identifying trace dependencies among software ar-
tifacts. The following discusses a strongly iterative, testing-based approach to
trace analysis. We will show that it is possible to largely automate the generation
and maintenance of trace dependencies. And we will show that it is possible to re-
duce and even eliminate all of the complexities associated with trace analysis dis-
cussed previously.

Our approach simplifies the trace analysis by using and observing test execu-
tions (Egyed, 2002). Testing is a natural process during software development. It
is not difficult for an engineer to supply a set of test scenarios (Lindvall, 1994). Of
course, an executable software system is needed to test the scenarios but such a
(partial) system typically exists early in modern, iterative software development.
In addition, the engineer must provide input hypotheses on how these test scenar-
ios relate to the software artifacts. The essential trick is then to observe the run-
time behavior of these test scenarios during their execution and to translate this
behavior into a graph structure to indicate commonalities among this runtime be-
havior. Trace dependencies are then computed on the bases of their degrees of
commonality. Note that testing is a validation form that does not have a complete-
ness guarantee (i.e., missing test cases). This naturally affects the trace analysis
and thus our approach provides an input language that lets the engineer express
these uncertainties (if known).

Our approach requires only a small set of input hypotheses (i.e., the input are
essentially trace dependencies between test scenarios and software artifacts but are
allowed to be incomplete or incorrect; ergo hypotheses) to generate new trace de-
pendencies. Our approach also validates existing trace dependencies and it identi-
fies incorrect input in some cases. For the engineer, this translates into confidence
that the results of the trace analysis are correct. Our approach strongly encourages
iterative trace analysis. The following discusses how testing helps in the identifi-
cation of trace dependencies between:

• Requirements/design and code
• Requirements and requirements
• Requirements and design
• Design and design

8 Alexander Egyed

Trace Dependencies between Requirements/Design/Code

In order to identify trace dependencies, the approach requires test scenarios that
are executable on the source code. Table 2 lists some test scenarios we defined for
the VOD system. For example, test scenario 1 uses the VOD system to display a
list of movies. The details on how to test this scenario on the system are omitted
here for brevity but the test scenario describes how to configure the VOD system
and what user interface actions to perform (e.g., which buttons to press) in order to
achieve the desired results. We then used the commercial tool IBM Rational
PureCoverage to monitor the VOD system while it was executing the test sce-
nario. It detected that the Java classes BorderPanel (C), ListFrame (J), ServerReq
(R), and VODClient (U) were executed while testing the scenario. In the follow-
ing, we use the single letter acronyms for the 21 Java classes for brevity.

Table 2 also depicts the hypotheses on how the test scenarios relate to the pre-
viously mentioned software artifacts (classes, state transitions, and requirements)
and Table 3 resolves the footprint acronyms in terms of the Java classes used. For
instance, test scenario 1 is about viewing a movie list and it was hypothesized to
relate to the state transition [s3] “Movies Button” in the statechart diagram (see
Figure 1). This implies that test scenario 1 is a test case for the state transition [s3]
and, while executing it on the real system, it was observed to execute the Java
classes (code) [C,J,R,U]. Due to the transitivity of trace dependencies, one may
conclude that the state transition [s3] is implemented in the source code classes
[C,J,R,U]. This is a trace dependency between a design element (e.g., state transi-
tion s3) and the source code (e.g., classes BorderPanel (C), ListFrame (J), Server-
Req (R), and VODClient (U)).

Table 2 defines 12 additional scenarios including one test scenario for every re-
quirement (although multiple may exist). A trace dependency is ambiguous if it
does not precisely define relationships between artifacts and code. For instance,
test scenario 2 defines the state transitions [s4] and [s6] relating to the code
[C,E,J,N,R]. This statement is ambiguous in that it is unclear which subset of
[C,E,J,N,R] actually belongs to [s4] and which subset belongs to [s6].

Table 2. Scenarios and Observed Footprints

Test Scenario Artifact Observed Java Classes
1. view movie list [s3] [C,J,R,U]
2. view textual movie information [s4,s6][r2] [C,E,J,N,R]
3. select/play movie [s8,s9][r6] [A,C,D,F,G,I,J,K,N,O,R,T,U]
4. press stop button [s9,s12][r8] [A,C,D,F,G,I,K,O,T,U]
5. press play button [s9,s11][r9] [A,C,D,F,G,I,K,N,O,T,R,U]
6. change server [s5,s7] [C,R,J,S]
7. playing [s9] [A,C,D,F,G,I,K,O]
8. get textual movie information [r5] [N,R]
9. movie list [r4] [R]
10. VCR-like UI [r7] [A,C,D,F,G,I,K,N,O,R,T,U]
11. select movie [r0] [C,J,N,R,T,U]

VBSE book format sample chapter 9

12. select/play movie [r1] [A,C,D,F,G,I,J,K,N,O,R,T,U]
13. press pause [s9,s10][r3] [A,C,D,F,G,I,K,O,U]

Table 3. VOD Java Classes and their unique identifiers

A BitInputStream H GOPHeader O Picture
B Block I IDCT P PictureHeader
C BorderPanel J ListFrame Q SequenceHeader
D DataStore K Macroblock R ServerReq
E Detail L MacroblockNew S ServerSelect
F FrameImage M MacroHeader T Video
G GOP N Movie U VODClient

Our approach relies on the abilities of the engineers to relate the test scenarios

to the requirements and design elements. Three error types are possible that im-
pact the trace analysis in different ways: (1) the engineer omits a link between a
test scenario and a requirement, (2) the engineer creates a wrong link, or (3) there
is a mismatch between a requirement and the specified tests (for example, a test
case exercises a wrong or a partially wrong functionality). Although the technique
has means of detecting inconsistencies among its input (Egyed, 2004), it can be
fooled this way and engineers need to be careful when providing their specifica-
tions.

The advantage of this approach is that it reveals trace dependencies between
any software artifact and source code provided that the engineer is able to define
and execute a corresponding test scenario. We will discuss in Section 3.5 why this
avoids the many complexities discussed earlier.

Trace Dependencies among Requirements

Pfleeger and Bohner (Pfleeger-Bohner, 1990) distinguish between vertical and
horizontal trace dependencies where the former identify traces among artifacts be-
longing to the same level of abstraction (same layer) and the latter identify traces
among artifacts of different levels of abstractions. Trace dependencies among re-
quirements fall into the first category.

Our approach identifies trace dependencies among requirements by investigat-
ing the requirements to code dependencies identified above. Figure 2 depicts the
execution of three requirements schematically in form of arrows that represent
their execution paths (i.e., arrows correspond to the sequence of method execu-
tions). For example, the efficiency requirement r6 that the playing of a movie has
to start within one second is testable by clicking on the “start movie” button of the
VOD player and monitoring its execution path (i.e., path in the upper left). The
other two requirements follow their own execution paths during testing. That we
were not actually interested in what sequence classes/methods where executed but
only whether they were executed or not.

10 Alexander Egyed

r6: One second max to
start playing a movie

(Efficiency/Time Behavior)

r1: Play movie
automatically after
selection from list

(Functionality)

r2: users should be able to
display textual information

about a selected movie
Figure 2. Execution Paths (footprints) of three VOD requirements

Once testing is complete, we infer trace dependencies among the three re-
quirements through their overlapping execution paths (called “footprints”). For
example, we can observe in Figure 2 that the footprints of requirements r1 and r6
overlap. This implies some trace dependency between the efficiency requirement
r6 and the functionality requirement r1 because they executed similar lines of
code during testing and thus their implementation is interwoven (i.e., they share a
common part of the code). Since there is no overlap between the footprints for r6
and r2 we conclude that there is no trace dependency between those two require-
ments as they are implemented in different parts of the system. Note that r6 and r2
may still affect one another in other ways (i.e., calling or data dependencies) but
these relationships are not of interest here. If more than one test scenario exists for
a requirement then its footprint is simply the union of all individual paths.

The three weaknesses of this approach are: (1) lack of test-scenarios which
leads to a footprint that is a subset of the true one, (2) shared utility classes that are
used by different artifacts but do not imply commonality, and (3) code duplication
which leads to fewer overlaps. All three problems have to be dealt with manually
but the engineer is supported by the trace analyzer in terms of the input language
and results generated. For example, an engineer may state that an artifact has “at
least” some footprint if only a subset of test scenarios are available. Or if an engi-
neer provides input that states that two artifacts are unrelated but an overlap is
eventually identified then either the input was incorrect or the overlap is shared
utility code (the choice is presented by the approach but has to be decided upon by
the engineer).

Trace Dependencies between Requirements and Design

Pfleeger and Bohner (Pfleeger-Bohner, 1990) define horizontal trace dependencies
as linking artifacts of different lifecycle activities. Trace dependencies between
the requirements and the design fall into this category and they are computed in
the same fashion as the ones above. For example, we know that the requirement r2

VBSE book format sample chapter 11

(the ability to get textual information about a movie) executes the Java classes N
and R (see Table 2). We also know from Table 2 that the state transition “Play
Button” (s9 and s11) executes the Java classes [A,C,D,F,G,I,K,N,O,T,R,U]. Thus,
there is a trace dependency between [s9,s11] and r2 because the latter is a subset
of the execution of the former. In other words, it appears as if the pressing of the
play button results in the downloading of textual information about the movie
(among other things).

Trace Dependencies within Design and Issues of Uncertainties

Trace dependencies within the design (i.e., between the statechart and the class
diagram) are identified on the same principle. However, while investigating the
input hypotheses in Table 2 in more detail, we find that there are several examples
where the input hypotheses include multiple software artifacts. For example, test
scenario 3 is about selecting and playing a movie which was correctly hypothe-
sized as relating to the state transitions s8 and s9 (select and playing). This implies
that both state transitions relate to the Java classes [A,C,D,F,G,I,J,K,N,O,R,T,U]
but it remains unknown (uncertain) which Java classes relate to s8 and which ones
relate to s9. This uncertainty is a problem as is illustrated in Figure 3 (Egyed,
2004).

(a)

s8

s9

(b)

s8,s9

where am I? where am I?

Figure 3. Grouping Uncertainty causes Trace Dependency Uncertainty

Figure 3 (a) depicts the execution path of test scenario 3 schematically. Since
test scenario 3 was hypothesized to relate to both s8 and s9, we may wonder how
exactly this region is divided up between them. Imagine we have another design
element that overlaps with s8 and s9 at the triangle in the middle. We know that
this overlap implies a trace dependency but is it incorrect to say that this triangle
overlaps with both s8 and s9. The grouping of software artifacts is a problem be-
cause we only understand the meaning of the elements as a group but not their in-
dividual elements. For example, Figure 3 (b) expands the illustration of the execu-
tion path and separates the execution s8 from the execution s9. It is now obvious
that the triangle in the middle factually overlaps with s9 but not s8.

We support grouping uncertainty to ease the task of the engineer in providing
input hypotheses because there are cases where it is hard to break down a single

12 Alexander Egyed

test scenario into separate pieces as in the case of test scenario 3. Recall that the
selection of the movie automatically starts its playing which makes it hard to test
them separately. Our approach is capable of resolving grouping uncertainties by
taking other input hypotheses under consideration. The details are discussed in
(Egyed, 2004).

Benefits of Test-based Trace Analysis

As input, our approach requires (1) software artifacts (i.e., model elements) with
unknown trace dependencies; (2) an executable software system; (3) test scenar-
ios; and (4) hypotheses on how the artifacts relate to the test scenarios. By moni-
toring the lines of code executed during the testing of the scenarios, overlaps are
identified. These overlaps imply trace dependencies among the test scenarios and
subsequently among the artifacts that are hypothesized to relate to those scenarios.

Clearly, all of the input items are reasonable during software development.
Software artifacts and the executable software system are the products of software
development. So are test scenarios. Even the relationships between software arti-
facts and test scenarios are defined by engineers as they are needed during valida-
tion and verification. If this input is available then the benefits are extensive:

1) Only n input hypotheses are required to infer n2 trace dependencies: a model

element has trace dependencies with potentially every other model element
(n2) but a model element has only one trace dependency to the system (n).

2) Collaboration among engineers is reduced: engineers only need to investigate
their own artifacts and how they relate to the source code. There is no need to
understand any other engineer’s artifacts. Also there is no need to understand
the semantic and syntactic differences among artifacts because the artifact to
code mappings can be done independently for all artifacts.

3) The use of informal, partial, non-standardized notations is less of a problem
because these differences do not have to be understood in context of other
models or by other engineers.

The key benefit of our approach is that the engineer only needs to understand the
individual relationships between any artifact and the system (i.e., source code).
These relationships can be investigated fully independent for every artifact.

Another benefit of our approach is that it measures the completeness and cor-
rectness of the generated trace dependencies (this is discussed in detailed later).
That is, incomplete and (potentially) incorrect input also produces incomplete and
(potentially) incorrect trace dependencies as a result. By being able to measure
completeness and correctness, we can guide the engineer in what additional input
is needed to make the result more complete or more correct. This fits well with
value-based software engineering where software artifacts have different levels of
importance. Thus, by simply prioritizing our guidance according to the importance
of the artifacts, it is possible to customize our approach in producing more com-
plete/correct trace dependencies for more important artifacts. It must be under-

VBSE book format sample chapter 13

stood that generating complete/correct traceability is very expensive. Even with
the improvements of our approach, the trace analysis is still hard. Being able to
tailor the trace analysis to the high-value artifacts is thus an effective way of deal-
ing with this problem.

However, there is also an issue of timeliness. The software system and corre-
sponding test scenarios are not available early on during the software lifecycle.
Thus, the value-based benefits outlined above are not applicable to the entire
software lifecycle. Furthermore, our approach detects trace dependencies only
among artifacts that can be mapped to source code. Thus, the approach is only ap-
plicable to product models that describe software systems. This includes require-
ments, design models, and architecture models but excludes process or decision
models.

This trade-off is not unreasonable during software development but may not be
acceptable always. It has been argued that trace dependencies are not that impor-
tant early on during the software lifecycle because the complexities are still man-
ageable and few stakeholders are involved (Lindvall, 1994). Since the approach is
applicable to implementation, testing, and maintenance, it is actually applicable to
most of the software lifecycle because these stages consume more than two-thirds
of all development cost (Boehm et al., 2000). However, if trace dependencies are
needed early on, a pure testing-based approach to trace analysis will not suffice.
To get around this problem, the following investigates value-based trade-offs of a
variation of this approach.

4. Trace Analysis through Commonality

Our approach works on the commonality principle. That is, if model element A
traces to some source code and model element B traces to the same source code
then A and B are similar elements because both A and B are interwoven in the im-
plementation. We thus use overlaps among lines of code during test execution to
infer commonality and subsequently trace dependencies. This results in a signifi-
cant reduction of the complexity of the trace analysis because instead of having to
define trace dependencies among all software artifacts (Figure 4 (a)), one only has
to define them between the software artifacts and the source code (Figure 4 (b)).
As output, the approach then generates the traces in Figure 4 (a) based on their
overlaps in Figure 4 (b). In other words, the linear input generates a quadratic
number of trace dependencies as its output.

14 Alexander Egyed

(a)

Requirements

Statechart
Diagram

Class
Diagram

Source
Code???

Requirements
Class

Diagram

Source Code

(b)

Requirements

Statechart
Diagram

(c)

Class
Diagram

Statechart
Diagram ???

Figure 4. Trace Analysis based on Commonality

It is important to observe that there are really two factors that contribute to the
simplification of the trace analysis problem: (1) the use of the source code as a
common ground and (2) the use of testing to ease the artifact to code mapping of
the input hypotheses.

In other words, the source code is a common ground for identifying commonal-
ities among artifacts and it is a testable item. Both factors contribute to the simpli-
fication of the trace analysis but it is its use as a common ground that has the more
significant effect in this equation. The use of a common ground changes the net-
work (many-to-many) structure in Figure 4 (a) to a simple, linear star (many-to-
one) structure in Figure 4 (b). The use of the common ground thus simplifies trace
analysis to a linear problem instead of a quadratic one.

Testing is an added benefit in providing the linear input. Instead of requiring
the engineer to guess the artifact to code mapping directly, we allow the engineer
to break down this task into the finding of test scenarios for artifacts followed by
the testing of these artifacts. In other words, the contribution of testing is in the
halfway automation of the software artifact to code mapping (the input hypothe-
ses).

Testing is thus an aid to the trace analysis but not a requirement. This opens our
approach to other possibilities. For example, could we use the class diagram (in-
stead of the source code) as a common representation for the trace analysis?
Figure 4 (c) depicts this case. If it were possible to use the class diagram as a
common representation then engineers would need to define their input in terms of
artifact to class diagram mappings (e.g., requirements to class diagram and state-
chart diagram to class diagram). While this alternative sacrifices the use of testing
as a simplification, it benefits from the use of the common representation. The fol-
lowing explores the trade-offs of this option.

Trace Dependencies between Requirements/Statechart and Class

If the class diagram is used as a common representation then the engineer must
hypothesize about the artifact to class diagram mapping. Table 4 identifies such
hypotheses for some requirements and statechart elements. For example, require-
ment r0 (download movie data on demand while playing a movie) is a functional-
ity that has to be implemented inside the class Streamer (c2). Or the statechart
transition s3 (select movie) is likely about the classes Server Access and Movie Se-
lection (c3 and c5).

VBSE book format sample chapter 15

Table 4. Artifact to Class Mapping

Artifact Classes
r0 c2
r1 c2,c3,c4,c5
r6 c2,c3
r5 c3
s3 c3,c5
s8 c2,c3
s9 c2,c3,c4
s2 c1
s1 c1,c4

Trace Dependencies between Requirements/Statecharts

Trace dependencies can now be established on the basis of their commonality in
the class diagram. For example, there is no trace dependency between the re-
quirement r0 and the state transition s3 because they are implemented in different
classes in the class diagram. On the other hand, there is a very strong overlap be-
tween the classes of requirement r6 and the state transition s8 which implies that
there is a trace dependency between the “one second max to start playing a movie”
and the state transition “play” implying that the state transition has to implement
the performance requirement. The class diagram also serves as a good common
representation for trace dependencies among requirements. For example, we see
that requirement r6 is realized in a subset of the classes that requirement r1 is real-
ized with. This implies that the “one second max to start playing a movie” is still a
sub-requirement to the “play movie automatically after selection.”

Trade-Offs during Class-based Trace Analysis

Using the class diagram instead of the source code as a common representation
brings with it another set of trade offs. On one hand, we loose testing as a simpli-
fication on how to provide input hypotheses (mapping between artifacts and class
diagram). On the other hand, we gain in two ways:

1) it is easier to define input hypotheses in terms of 6 classes in the class dia-

gram than 21 classes in the source code. This shifts the granularity of the
trace analysis in favor of fewer elements to consider (i.e., less complexity).

2) the class diagram is available earlier in the software lifecycle than the source
code. This shifts the timeliness of the trace analysis in favor of early risk as-
sessment.

On the surface, the use of the class diagram is thus a trade-off in less automation
(i.e., no testing) but also less complexity and earlier availability. The reduction in

16 Alexander Egyed

complexity may well offset the loss of automation but it has the added advantage
of its earlier availability in the software lifecycle.

Even better, the results of this earlier trace analysis also benefits the finding of
input hypotheses for later phases of the trace analysis when source code is avail-
able. As such, we then only need to find test scenarios for the classes in the class
diagram and, through transitivity, get the traces from requirements/statechart to
source code for free. For example, if the class c3 maps to the Java classes
[A,D,G,I,K,R] (i.e., we may find out through testing at a later time) then we may
conclude that requirement r5 must also trace to [A,D,G,I,K,R] because the Table 4
defined r5 to trace to c3.

Unfortunately, there is another drawback that must be considered. The use of
the class diagram changed the granularity of the trace analysis. Overlaps are now
determined based on the commonality of the six classes in the class diagram in-
stead of the 21 Java classes in the source code. This shift in granularity may result
in false trace dependencies. Consider the following example: the requirement r5
(three seconds max to load textual information about a movie) overlaps with the
state transition s9 (playing) which is rather odd (see Table 4). Of course, it is nec-
essary to load textual information to start playing but, once playing, it is no longer
necessary to load textual information about the movie. On closer investigation, we
find that the class c3 implements interfaces for two different servers: the first in-
terface deals with the movie server that handles movie lists and textual details and
the second interface deals with the http server that handles the streaming media.
The requirement r5 uses a different server than the state transition s9 but both
servers were packaged into the one class c3.

Therefore, the downside of less granularity during trace analysis is that distinct
concerns are packaged together although they may not always be used together.
Because c3 now packages two kinds of servers, it is no longer possible to identify
which server, in particular, is being used. During trace analysis this implies that
artifacts are related even if they use different servers. We refer to the effects of
changing granularity during trace analysis as precision. The use of the class dia-
gram instead of the source code lowered precision.

For a stakeholder, lower precision means a higher likelihood of false positives
(wrong trace dependencies) but not false negative (missing trace dependencies).
This is acceptable in cases where errors happen because of the lack of traces but
not their abundance. However, if there are many more false trace dependencies
than correct ones, then this is a problem also.

5. The Tailorable Factors

The required quality of traces is determined by their usage. For example, during
impact analysis it may be acceptable to have trace with false positives whereas
during consistency checking they may be inappropriate. It is thus vital for trace
analysis to be guidable and our approach can be guided in terms of the complete-
ness, precision, timeliness, and even correctness of the resulting trace dependen-

VBSE book format sample chapter 17

cies; on both a global level affecting all results and a local level affecting the
traces among particular software artifacts. This ability to guide the trace analysis if
vital for value-based software development as it allows the engineer to minimize
the cost/effort of trace analysis.

This chapter discussed trace analysis as a trade-off among four contributing
factors: precision, completeness, correctness, and timeliness. As we find often, it
is hard (and expensive) get the best of all four factors at the same time. The fol-
lowing thus discusses the value trade-offs among some variations.

Precision, Completeness, Correctness, and Timeliness

Precision (introduced in the previous chapter) is a tailorable factor that depends on
the granularity of the common representation. The more granular the common rep-
resentation the more precise is the trace analysis. We demonstrated that the use of
the 21 Java classes results in a more precise trace analysis than the use of the six-
class class diagram. It is even significant whether we perform trace analysis on the
21 Java classes or its hundreds of individual methods as, sometimes, classes merge
methods that are not always used together. The lack of precision has the negative
side effect of false positives in that the trace analysis will identify more trace de-
pendencies than factually exist. In an extreme case, where the common representa-
tion exists of a single element only (e.g., the system), all artifacts will map to this
single element and thus there would be trace dependencies among all artifacts.

Completeness (i.e., an input is complete if we know the artifacts relationship to
every code element) is a tailorable factor that depends on the input hypotheses.
The fewer hypotheses, the less complete is the trace analysis. We demonstrated
this effect on the grouping uncertainty were it made a difference in not knowing
exactly what artifact traces to what part of the common representation (i.e., if a
and b trace to 1 and 2 then we do not know whether a traces to 1 or 2 or both). The
lack of completeness has the negative side effect of incomplete results. Thus, the
trace analysis will not be able to define exactly how two artifacts relate to one an-
other if it does not know exactly how these artifacts relate to the common repre-
sentation. In an extreme case, where there is only one input that states that all arti-
facts map to the entire common representation, the trace analysis could not define
any trace dependencies.

Correctness is a tailorable factor that also depends on the input hypotheses. It
was not much emphasized in this chapter as its effects should be obvious: the less
correct the input, the less correct the resulting trace dependencies. The lack of cor-
rectness may result in both false positives and false negatives (i.e., wrong trace
dependencies and missing trace dependencies). However, our approach is capable
of detecting incorrect input as a trade off among multiple inputs. This capability
was not discussed here for brevity (Egyed, 2004). Correctness is affected by test-
ing (i.e., testing is a halfway automation of the input hypotheses which positively
affects correctness) and by granularity (i.e., the complexity is reduces with less
granularity).

18 Alexander Egyed

Finally, timeliness is a tailorable factor that depends on both the input hypothe-
ses and the common representation. Timeliness is affected indirectly in that a test-
able, common representation (i.e., source code) may be substituted by another
common representation that, typically, benefits timeliness but not precision (be-
cause of granularity) and not completeness (because of lack of testing).

Trade-Offs among the Tailorable Factors

To understand the effects of precision, completeness, and correctness, we have to
investigate them in relationship to the common representation. Figure 5 depicts the
common representation and its relationships to individual artifacts (e.g., require-
ments, class and statechart). Since the trace analysis determines overlaps among
artifacts in terms of their effects on the common representation (CR), it follows
that the tailorable factors of the individual inputs have to be combined to under-
stand their effects on the results. For example, the trace analyzer generates trace
dependencies between artifact 1 (A1) and artifact 2 (A2) by investigating the over-
lap among the trace dependencies between A1 and the common representation
(A1-CR); and A2 and the common representation (A2-CR). The following ex-
plores how the quality of the individual input hypotheses affects the value of the
output trace dependencies.

Common Representation (CR)

Artifact 1 (A1) Artifact 2 (A2) Artifact 3 (A3)

- completeness
- correctness

- completeness
- correctness

- completeness
- correctness

- precision

Figure 5. The Effects of the Input on the Trace Analysis

Precision is a property of the common representation (directly) as input hy-
potheses are defined in a level of granularity that matches the common representa-
tion. Since all artifacts share the same common representation, it affects all result-
ing trace dependencies among all artifacts (A1-A2, A1-A3, and A2-A3).
Completeness and Correctness are properties of the input hypotheses of individual
artifacts (e.g., A1 to common representation). Since these two factors belong to
individual artifacts, they only affect those resulting trace dependencies that in-
clude these artifacts (e.g., A1 to A2 trace dependencies are affected by A1-CR and
A2-CR qualities but not by A3-CR qualities).

The output trace dependencies are only as good as the product of the quality of
the input trace dependencies. For example, if the A1-CR mapping is 100% com-
plete and the A2-CR mapping is only 50% complete then the resulting A1 to A2
trace dependencies will be 50% complete only (i.e., the output cannot be more
complete than its individual inputs). The correctness factor exhibits the same ef-
fect. Not surprisingly, 100% complete and precise output requires 100% complete

VBSE book format sample chapter 19

and precise input (see Table 5). Note that the values are averages in that a 50% in-
put mixed with another 50% input is 25% complete in average.

Table 5. Effect of Input Completeness/Correctness on Output

Completeness/Correctness
A1 A2 A1 A2 A1 A2

100 100 100 50 50 50
A1-A2 100 50 25 in average

For example, the input of the VOD system was defined with an unknown level

of completeness and correctness. However, after the trace analysis (based on the
input in Table 2), we learn that we have almost complete knowledge of the map-
ping from state s9 to the code (>90%) but still rather incomplete knowledge of the
mapping from s8 to the code (<50%). If an engineer values s9 higher than s8 then
the engineer also values the traces derived from s9 higher than those from s8. As-
sume that we have complete knowledge of the footprints of the requirements
(100%). The trace analyzer thus generates output traces between the requirements
and s9 that are 90% complete while the ones between the requirement and s8 are
less than 50% complete.

This property has several benefits. First, we can predict the quality of the result
based on the quality of the input. Second, not all input must be defined 100%
complete if the output is not required to be 100% complete also. Value-based soft-
ware engineering places different levels of importance onto different artifacts. Our
approach can thus be guided by the required level of importance.

While completeness and correctness are independent value factors, we ob-
served that the more complete the input the more likely our approach detects in-
correctness. In essence, our approach uses constrained-based reasoning to identify
incorrectness and the more input the more constraints.

Table 6. Effect of Precision on Completeness and Correctness

 Completeness or Correctness
x 100 75 50 25

x/2 100 87 75 62 Precision
x/4 100 94 88 81

In principle, the effects of precision are independent from the effects of com-

pleteness and correctness. This is because we measure completeness and correct-
ness relative to the granularity of the common representation. However, doing so
ignores a side effect: if an input is 50% complete for a given precision then the
same input becomes 75% complete (in average) if the precision is cut in half (i.e.,
completeness gets grouped with incompleteness which gives the wrong appear-
ance of more completeness). That is, correctness and completeness evolve relative
to the precision of the common representation as is illustrated in Table 6. It must
be noted that Table 6 depicts the relative effects of completeness and correct

20 Alexander Egyed

within a single application only. This table cannot be used to predict complete-
ness/correctness for other applications.

Table 7. Input vs. Output Trade-off during Trace Analysis

Output (Results of the Trace Analysis) Input and Output Trade-Off False positives False negatives Incompleteness
Precision Yes Yes

Completeness Yes Yes Input
Correctness Yes Yes

Table 7 summarizes the effects of the tailorable input factors on the output.

More input precision reduces false positives and incompleteness. The same is true
about more input completeness. More correctness reduces both false positives and
false negatives but does not affect completeness. Our approach can measure the
level of input/output completeness and it can indicate input incorrectness.

6. Conclusions

Value-based software engineering places different values on different software ar-
tifacts. It is important for cost effectiveness to adapt the quality of trace dependen-
cies among these artifacts according to their importance. This paper discussed the
complexity of trace analysis and the many benefits of a testing-based approach to
trace analysis (e.g., quadratic reduction in trace input, irrelevance of syntactic and
semantic differences among artifacts). Furthermore, this paper discussed the fac-
tors that affect the quality of the trace dependencies (output) generated by the
trace analysis (e.g., precision, completeness, correctness, and timeliness).

The engineer can influence these factors to accommodate the needs of value-
based software engineering in terms of what traces are needed, when traces are
needed, and in what level of quality trace are needed. It is future work to calibrate
the quality trade-offs discussed in this chapter on other case studies. Also, it is fu-
ture work to investigate the effects of using different kinds of common representa-
tions (e.g., the class diagram) as our findings are limited to date.

References

(Antoniol et al., 2002) Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E.: Recovering Traceability Links between Code and Documentation,
IEEE Transactions on Software Engineering, 28(10), 970-983.
(Biffl-Halling, 2003) Biffl, S. and Halling M.: Investigating the Defect Detection
Effectiveness and Cost-Benefit of Nominal Inspection Teams, IEEE Transactions
on Software Engineering, 29(5), 385-397.

VBSE book format sample chapter 21

(Boehm, 2003) Boehm, B.: Value-Based Software Engineering, Software Engi-
neering Notes, 28(2), 1-12.
(Boehm-Huang, 2003) Boehm, B. and Huang, L.G.: Value-Based Software Engi-
neering: A Case Study, IEEE Computer, 36(3), 33-41.
(Boehm et al., 2000) Boehm, B.W., Abts, C., Brown, A.W., Chulani, W., Clark,
B.K., Horowitz, E., Madacy, R., Reifer, D., and Steece, B.: Software Cost Estima-
tion with COCOMO II, (Prentice Hall, New Jersey, 2000).
(Boehm et al., 1998) Boehm, B., Egyed, A., Kwan, J., and Madachy, R.: Using the
WinWin Spiral Model: A Case Study, IEEE Computer, 33-44.
(Card, 1992) Card, D.N.: Designing Software for Producibility, Journal of Sys-
tems and Software, 17(3), 219-225.
(Cross, 1991) Cross, G.M.: Requirements and Traceability Management, Proceed-
ings of the International Conference on Software for Guidance and Control, 4-1-
4/4.
(Dohyung, 1999) Dohyung, K.: Java MPEG Player,
http://peace.snu.ac.kr/dhkim/java/MPEG/.
(Egyed, 2004) Egyed, A.: Resolving Uncertainties during Trace Analysis, Pro-
ceedings of the 12th ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE), 3-12.
(Egyed, 2002) Egyed, A.: A Scenario-Driven Approach to Trace Dependency
Analysis, IEEE Transactions on Software Engineering (TSE), Volume 29, Num-
ber 2, pp. 116-132.
 (Egyed-Grünbacher, 2002) Egyed, A. and Grünbacher, P.: Automating Require-
ments Traceability - Beyond the Record and Replay Paradigm, Proceedings of the
17th International Conference on Automated Software Engineering (ASE), pp.
163-171.
(Egyed-Grünbacher, 2004) Egyed, A. and Grünbacher, P.: Identifying Require-
ments Conflicts and Cooperation: How Quality Attributes and Automated Trace-
ability Can Help, IEEE Software, 21(6), 50-58.
(Finkelstein et al., 1991) Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L.,
and Goedicke, M.: Viewpoints: A Framework for Integrating Multiple Perspec-
tives in System Development, International Journal on Software Engineering and
Knowledge Engineering, 31-58.
(Gotel-Finkelstein, 1994) Gotel, O.C.Z. and Finkelstein, A.C.W.: An Analysis of
the Requirements Traceability Problem, Proceedings of the First International
Conference on Requirements Engineering, 94-101.
(Jacobson, 1987) Jacobson, I.: Object Oriented Development in an Industrial En-
vironment, Proceedings of the International Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA), 183-191.
(Lindvall, 1994) Lindvall: A Study of Traceability in Object-Oriented Systems

22 Alexander Egyed

Development, PhD Thesis Tech Report No 462, Linköping University, Institute of
Technology, Sweden.
(Lindvall-Sandahl, 1996) Lindvall, M. and Sandahl, K.: Practical Implications of
Traceability, Journal on Software - Practice and Experience (SPE), 26(10), 1161-
1180.
(Moore, 1995) Moore, G.: Inside the Tornado, (, Harper Collins Publishers, 1995).
(Nuseibeh, 2001) Nuseibeh, B.: Weaving Together Requirements and Architec-
tures, IEEE Computer, 34(2), 115-117.
(Pfleeger-Bohner, 1990) Pfleeger, S.L. and Bohner, S.A.: A Framework for Soft-
ware Maintenance Metrics, IEEE Transactions on Software Engineering, 16(5),
320-327.
(Pohl, 1996) Pohl, K.: PRO-ART: Enabling Requirements Pre-Traceability, Pro-
ceedings of the 2nd International Conference on Requirements Engineering
(ICRE), 76-85.
(Ramesh, 1993) Ramesh: A Model of Requirements Traceability for Systems De-
velopment, Technical Report, Naval Postgraduate School, Monterey.
(Rumbaugh, 1999) Rumbaugh, J., Jacobson, I., and Booch, G.: The Unified Mod-
eling Language Reference Manual, (Addison Wesley1999).
(Tilbury, 1989) Tilbury, A.M.: Enabling Software Traceability, In IEE Collo-
quium on the Application of Computer Aided Software Engineering Tool, Lon-
don, UK.
(Övergaard, 1998) Övergaard, G.: A Formal Approach to Relationships in the
Unified Modeling Language, Proceedings of the Workshop on Precise Semantics
for Software Modeling Techniques (PSMT’98), 91-108.

Author Biography

Alexander Egyed is a research scientist at Teknowledge Corp. His research inter-
ests include requirements engineering, incremental and iterative software model-
ing (transformation and analysis), traceability, and simulation. He received his
PhD in computer science from the University of Southern California. He is a
member of the IEEE, IEEE Computer Society, ACM, and ACM SIGSOFT. Con-
tact him at Teknowledge Corp., 4640 Admiralty Way, Ste. 1010, Marina Del Rey,
CA 90292; aegyed@ieee.org.

